Asymptotic regularity of Daubechies’ scaling functions
نویسندگان
چکیده
منابع مشابه
Asymptotic Regularity of Daubechies’ Scaling Functions
Let φN , N ≥ 1, be Daubechies’ scaling function with symbol ( 1+e−iξ 2 )N QN (ξ), and let sp(φN ), 0 < p ≤ ∞, be the corresponding Lp Sobolev exponent. In this paper, we make a sharp estimation of sp(φN ), and we prove that there exists a constant C independent of N such that N − ln |QN (2π/3)| ln 2 − C N ≤ sp(φN ) ≤ N − ln |QN (2π/3)| ln 2 . This answers a question of Cohen and Daubeschies (Re...
متن کاملSobolev Exponent Estimate and Asymptotic Regularity of M Band Daubechies' Scaling Functions
In this paper, direct estimate of Sobolev exponent of reenable distributions and its application to the asymptotic estimate of Sobolev exponent of M band Daubechies' scaling functions are considered.
متن کاملAsymptotic Behaviour of M-Band Scaling Functions of Daubechies Type
In this paper, we consider the asymptotic behaviour of M-band scaling functions of Daubechies type as M tends to innnity.
متن کاملAsymptotic Normality of Scaling Functions
The Gaussian function G(x) = 1 p 21⁄4 e¡x 2=2; which has been a classical choice for multiscale representation, is the solution of the scaling equation G(x) = Z R ®G(®x¡ y)dg(y); x 2 R; with scale ® > 1 and absolutely continuous measure dg(y) = 1 p 21⁄4(®2 ¡ 1) e¡y 2=2(®2¡1)dy: It is known that the sequence of normalized B-splines (Bn); where Bn is the solution of the scaling equation Á(x) = n ...
متن کاملOn asymptotic behavior of Battle-Lemarié scaling functions and wavelets
We show that the ‘centered’ Battle-Lemarié scaling function and wavelet of order n converge in L(2 ≤ q ≤ ∞), uniformly in particular, to the Shannon scaling function and wavelet as n tends to the infinity. AMS 2000 Subject Classification: 41A60, 42A20, 42C40.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-05251-x